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SEASONAL VARIABILITY OF DYNAMIC HEIGHT
AND ITS FOURIER ANALYSIS

Sydney Levitus, Grigory Isayev Monterey, and Timothy Boyer
Ocean Climate Laboratory
National Oceanographic Data Center
Silver Spring, Maryland

ABSTRACT

This atlas contains maps of climatological monthly mean dynamic height (dynamic-cm) of the sea surface relative to
the 1000 m depth level, their deviations from their climatological annual mean, and results of their Fourier analysis. The
latter includes geographical distributions of amplitudes and phases of the first and second Fourier harmonics, and
percent variance contributed by these harmonics to the climatological annual cycle. Zonal averages of these quantities
over 1° latitude belts, both for the global ocean and for the individual ocean basins, are presented.

1. INTRODUCTION

The study of sea level and its variability is a subject of
great importance. Knowledge of the general circulation
statistics of the world ocean, which includes sea level
statistics, is critical to describing the role of the world
ocean as part of the earth's climate system. The annual
cycle of sea level and its interannual variability yields
information concerning the dynamics of ocean currents as
well as the interannual, integrated variability of
temperature and salinity. For example, Montgomery
(1938) related fluctuations in sea level from tide gauge
stations along the east coast of the United States to
fluctuations in dynamic heights associated with ocean
currents. He referred to earlier work by Sandstrom
(1903) as the first attempt to relate changes in sea level to
ocean currents.

More recently the study of sea level has become a topic of
great interest from the point of view of climate change,
particularly the response of the Earth's climate system to
possible warming of the atmosphere troposphere an d
ocean due to the increased concentration of atmospheric
CO, and other radiatively important gases. Barnett
(1983), Douglas (1991,1992), and Gornitz (1995) have
studied the temporal variability and climatic chamge of

sea level based on tide gauge measurements. Possible
changes in sea level due to anthropogenic effects such as
increasing atmosphere CO, are of obvious
socioeconomic importance because of the obvious
consequences of sea level for coastal regions.

Changes in sea level are closely linked to variability in
geophysical quantities of interest to many scientific
disciplines. For example, Munk and Revelle (1952)
compared historical observation of changes in the length-
of-day to changes in steric sea level induced by
temperature changes, as well as sea level changes induced
by ice cap melting and deformation of the earth's crust.
Munk and MacDonald (1960) and Lambeck (1980)
discuss some of these effects in more detail.

Patullo ef al. (1955) introduced the term "steric sea level"
to distinguish that portion of temporally varying sea level
that arises due to changes in the temperature and/or
salinity of a water column. For example, an increase in
temperature or decrease in salinity of a water column will
increase the height of the columm. Through recent usage,
the term "steric sea level” is now used interchangeably
with dynamic height and geopotential thickness. Previous



works describing this parameter are relatively limited and
usually encompass the presentation of monthly or
seasonal distributions of sea level for limited parts of
ocean basins, but in a few cases, include entire ocean
basins. For example, Wyrtki (1971, 1975) produced
monthly distributions of steric sea level for the Indian and
Pacific Oceans.

Patullo et a/. (1955) made a comprehensive study of the
climatological annual cycle of sea level at tide-gauge
stations from various locations around the globe (mainly
coastal) and compared these records with the annual cycle
of steric sea level from historical hydrographic data. Their
study included determining the relative roles of the annual
cycles of temperature and salinity in determining the
annual cycle of steric sea level. Much of this earlier work
was reviewed by Lisitzin (1974). Hicks ef al. (1983) and
Woodworth (1984) have updated our knowledge of the
annual cycle of sea level using tide-gauge measurements
at various locations along the coasts of the United States
and the world ocean, respectively.

There have been several attempts to model the annual
cycle of sea level over the last twenty five years. The
basic processes that produce the annual cycle in both
tropical- and mid-latitudes are fairly well understood. Gill
and Niiler (1973) used a set of simple diagnostic
equations with climatological forcing to study the annual
cycle at mid-latitudes in the North Pacific and North
Atlantic. Their model results show that in both the North
Pacific and the North Atlantic oceans, the upper ocean
steric level and the inverted barometric response to
atmospheric loading are the dominant factors in
mid-latitude sea level variations. The air-sea heat flux is
the main contributor to variations in mid-latitude steric
level change on an annual time-scale. Their model
produces sizeable east/west variations, as well. A major
cause in the zonal variation of mid-latitude sea level is the
much more dramatic air-sea heat flux variations in the
western ocean basins resulting from the sensible heat flux
between relatively warm waters and winter outbreaks of
cold, dry continental polar air masses that is strongly
effected by the adjacent continental land mass. In
mid-latitudes, the response to variations in surface heat
flux is local because the ocean wave modes are too
sluggish to respond at this frequency. However, seasonal
variations of the western boundary currents (e.g. Fu et al.,
1987) caused by other processes (Anderson and Cory,
1985; Greatbatch and Goulding, 1989) may also be
substantial. In tropical latitudes, ocean wave modes
respond at much higher frequencies (e.g. Philander, 1978)
and substantial upper ocean sea level fluctuations could

be caused by the seasonal redistributions of the wind
fields. In the tropical Atlantic, for example, Merle (1980)
has shown that the annual variation in upper ocean heat
content is ten times larger than the air-sea heat exchange.
These changes in upper ocean steric level are dominated
by fluctuations of the thermocline and represent the wind
forced response of the tropical ocean.

Satellite altimetry is now greatly contributing to our
understanding of sea level and the general circulation of
the world ocean. The ongoing US/France
TOPEX/POSEIDON (T/P) project is the first global
observing system specifically designed to study large-
scale ocean dynamics. References to papers on seasonal
to interannual variability of global sea level based on T/P
altimetry can be found in recent review by Fu et al.
(1996). Many of these papers were published in two
special issues of the Journal of Geophysical Research
(1994, Vol. 99, No. C12; 1995, Vol. 100, No. C12).
Cheney et al. (1994) and Nerem et al. (1994) presented
spatial distributions of amplitude and phase of annual and
semiannual variations of the T/P altimetry derived global
sea level and compared them to the corresponding
parameters derived from temperature-salinity fields
presented by Levitus (1982). Chao and Fu (1995)
compared the T/P derived and OGCM (ocean general
circulation model) derived amplitude and phase of the
annual cycle of global sea level.

The purpose of this atlas is to document the
climatological annual cycle of dynamic height (0-1000
m) derived from climatological hydrographic data.
Objectively analyzed climatological monthly mean fields
of temperature and salinity are used to compute
climatological monthly mean density fields and
climatological monthly mean fields of dynamic height of
the ocean surface relative to the 1000 m depth level for
the World Ocean. We present the global climatological
monthly mean fields of dynamic height, their deviations
from the annual mean, and the results of their Fourier
analysis (amplitudes and phases of first and second
Fourier harmonics, etc.).

2. DATA

As a result of the Intergovernmental Oceanographic
Commission (IOC) Global Oceanographic Data
Archeology and Rescue (GODAR) project (Levitus er
al., 1994a), an updated temperature and salinity database
for the World Ocean has been compiled at the National
Oceanographic Data Center. Climatological monthly




mean temperature and salinity fields based on this
database were used to compute climatological monthly
mean density fields and the climatological monthly mean
dynamic heights of the World Ocean surface relative to
the 1000 m depth level. The fields are defined ona 1%
1° grid at 19 standard levels from the ocean surface to
1000 m depth. These fields are described in detail by
Levitus and Boyer (1994b) and Levitus et al. (1994c¢).
Climatological monthly mean density fields are computed
based on the International Equation of State of sea water.

3. COMPUTATIONAL FORMULAS

Geopotential thickness, AD, between two isobaric
surfaces p, and p, in the ocean is defined as

AD = fpz de (1)

Py

6 = (S, T,p) -o(35pss, 0°C,p)  (2)

where 0 is the specific volume anomaly ( Neumann and
Pierson, 1966; Gill, 1982). Specific volume «(S,T,p) =
p' (S,T,p) where p is the density, S the salinity, T the
temperature, p the pressure. Using salinity in units of pss
(practical salinity scale), temperature (°C), and pressure
(decibars), one obtains density (kg m?®) and
consequently the geopotential thickness ( m? sec’™?.
Assuming a hydrostatic ocean, the pressure differential in
formula (1) is replaced by py,gdz in which p, is a
representative constant density of 1020 kg'm?, g =9.87
m-sec” Pressure limits p, , p, in decibars are replaced by
depth in meters (the justification of this approximation
can be found in the monograph by Gill (1982).

The dynamic height, H, of the ocean surface relative to
the 1000 m level is computed as

0
H = 0 dz
P [ oo 3
4. FOURIER DECOMPOSITION

Dynamic height at every spatial grid point is represented
in a form of Fourier decomposition in time (Cartwright,

1990)

H@) = H

mean

B o] 39

n=1 n
or equivalently

H(t) =H

mean

e

2mnt | (5)
2

where T = 12 months is the period of annual cycle,

R
Hmean - 7—- fo H(n)dt (6)
is the climatological annual mean dynamic height,

2mnt

T ) dt (7)

_ 27
A, Tfo H(t)cos(

oy
i

2,7 . | 2nnt
: ?fo H(t)sm( - ]dt ®)

the following finite-difference approximations are used
for Hons A, B,

1 2
Hmean = ?ELI [{/At (9)

2 12 21tniAt
A ==y " H At
y = T2 ,COS[ - ) (10)

n T i=1 i

2«12 . [ 2mniAt
B = Hs At
m( 7 ) (11)

where H; , [ = 1,.. 12, are 12 climatological monthly mean
values of dynamic height, time step At = 1 month, period
T = 12 months.



Fourier decomposition (4)-(11) determines amplitudes

c, =(42+82)" 12)
and phases
¢, = arccos(4,/C,) (13)

of Fourier harmonics.

A smoothed dynamic height H(t) at each spatial gridpoint
is computed by retaining H,,.,,, and the first two Fourier
harmonics.

Percent variance, V, , contributed by the nth Fourier
harmonic to the climatological annual cycle of dynamic
height 0 - 1000 m is determined by the formula

2

C
y = = 14
"5 (14)

D = —12; i H ) (15)

where D is the dispersion of climatological monthly mean
dynamic heights H, , I = 1 ,...12 : The derivation of
formula (15) is based on the Parseval theorem. It can be
found in the work by Chatfield (1989).

S. RESULTS

In all of the following figures dark shading shows areas
where ocean depth is less than 1000 m; 'L' marks the
location of minimum value, 'H' marks the location of
maximum value of a parameter under consideration.

5.1. Global distributions

Figs. A1-A12 show monthly mean fields of dynamic
height 0-1000 m obtained from the climatological
monthly mean fields by retaining only the annual mean
and first two Fourier harmonics. Fig. A13 shows the
climatological annual mean field of dynamic height 0-
1000 m. Similar fields have been presented previously
(Stommel, 1964; Levitus, 1982) and the main features

are well known. Relatively strong gradients define the
interface between the subtropical and subpolar gyres,
however, these gradients are not nearly as strong as
gradients exhibited by synoptic distributions of these
features. Nor are they as strong as the corresponding
features found in the high resolution analyses presented
by Boyer and Levitus (1997). Other major features
include gradients associated with the Antarctic
Circumpolar Current and with the equatorial current-
countercurrent systems.

Figs. B1-B12 show the climatological monthly mean
minus the climatological annual mean fields of dynamic
height 0 - 1000 m. The seasonal variability of steric sea
level associated with the annual temperature cycle
dominates the midlatitude signal. In the tropics the annual
cycle of steric sea level is dominated by thermocline
displacements associated with changes in the wind and
current field.

Figs. C1-C12 show the results of a Fourier analysis of
dynamic height. Fig. C1 shows the amplitude of the first
Fourier harmonic of the climatological annual cycle of
dynamic height defined by formulae (10)-(12). One of the
characteristics of Fig. C1 is that the southern hemisphere
field is relatively noisy compared to the northern
hemisphere field. This is most likely due to the relative
paucity of data in the southern hemisphere. It is the
noisiness in the climatological monthly mean fields that
leads us to present these fields in a smoothed form
constructed as the annual mean plus first two fourier
harmonics. Major features of Fig. C1 for the northern
hemisphere include the relative maxima (values
exceeding 12.5 dynamic-cm) in the midlatitudes of the
western Pacific and western Atlantic Oceans. These
maxima are located in the same regions as maxima in the
rate of climatological change of heat storage (Levitus,
1987). Thus the annual cycle of steric sea level may in
part be accounted for by the annual cycle of heat storage
in these regions, as noted earlier by Patullo et al. (1955).
In the tropical Atlantic Ocean seasonal variations of
dynamic height exceed 5 dynamic-cm. This is the same
region where minimum changes in heat storage occur
(Levitus, 1987). In the tropics of the Pacific and Atlantic
oceans seasonal variations of dynamic height exceed
10.0 dynamic-cm. In the midlatitudes of the southern
hemisphere seasonal variations of dynamic height exceed
7.5 dynamic-cm.

Fig. C2 shows percent variance contributed by the first
Fourier harmonic to the climatological annual cycle of
dynamic height. In this figure light shading indicates




areas where percent variance contributed by the first
Fourier harmonic is less than 30%. In most of the
northern hemisphere contribution of the first harmonic
exceeds sixty percent. This is not the case for the
southern hemisphere which reflects the lack of data with
which we can define the climatological annual cycle in
this hemisphere.

Fig. C3 shows the phase (in months) of the first Fourier
harmonic of the climatological annual cycle of dynamic
height. Phase is computed using formula (13). In
midlatitudes maximum dynamic height occurs during
Sep-Oct in the northern hemisphere and during May-July
in the southern hemisphere. This pattern simply reflects
the dominant role that solar heating plays in forcing the
annual cycle of sea level in these regions (Gill and Niiler,
1973).

Cheney et al. (1994), Nerem et al. (1994), Chao and Fu
(1995) presented amplitude and phase of the annual and
semiannual variations of global sea level derived from
TOPEX/POSEIDON altimeter data. Comparison of Figs.
Cl, C3, and C8 of this work with Fig. 6 of Cheney et al.
(1994), Plate 3 of Nerem et al. (1994) and Fig. 2 of Chao
and Fu (1995) shows good general agreement between
the hydrography derived dynamic height and the altimetry
derived sea level. Note, that isolines of the hydrography
derived signal (this work) exhibit more noise in the
southern hemisphere than in the northern hemisphere,
which is associated with uneven distribution of
hydrographic data between hemispheres. For the altimetry
derived signal (Cheney ef al., 1994; Nerem ef al., 1994,
Chao and Fu, 1995) this is not the case. Good general
agreement of the hydrography derived and the altimetry
derived signals in the northern hemisphere corroborates
the altimetry derived signal as a whole and hence allows
one to put more weight on the altimetry derived signal in
the southern hemisphere where hydrographic data are
sparse.

52 Global and basin zonal averages

In this section we describe zonal averages for the world
ocean and individual ocean basins of the quantities
presented in Section 4. This represents a succinct way to
compare the different ocean distributions of dynamic
height.

Fig. C4 shows zonally averaged annual mean dynamic
height. The most striking feature is the observation that
the Atlantic Ocean is lower than the Pacific and Indian

Oceans at nearly all latitudes, and by more than 40
dynamic-cm in the 20°S-30°N latitude belt. Differences in
dynamic height between the Atlantic and Pacific Oceans
were described by Reid (1961) who noted a 40 dynamic-
cm difference between these oceans. In addition he noted
that in the 20-40 degree latitude belt, the North Pacific is
approximately 10-20 dynamic-cm higher than the South
Pacific - a result we confirm. However, in the Atlantic
Ocean he found a similar result, whereas we find no such
difference.

Zonal averages of the amplitude of first Fourier
harmonic, of the percent variance of climatological
annual cycle accounted for by this harmonic, and of the
phase of first Fourier harmonic are presented in Figs. C5-
C7. Zonal averages of the amplitude of first harmonic
range from 1 to 8 dynamic-cm with the largest amplitude
occurring in the 30-40 degree latitude belt of the Atlantic
and Pacific Oceans and the South Indian Ocean, and at
about 12°N in the North Indian Ocean. As seen in Figs.
C1-C3, the southern hemisphere analyses are relatively
noisy compared to the northern hemisphere analyses.
This is clearly illustrated by the zonally averaged
distributions of percent variance (Fig. C7). The percent
variance accounted for by the first harmonic generally
exceeds 60 percent in midlatitudes of the northern
hemisphere as compared to 30-40 percent in the southern
hemisphere. This is simply due to the relative paucity of
data in the southern as compared to northern hemisphere.
In the tropical Pacific distinct relative maxima occur at
7°S, 7°N, and 13°N, whereas in the tropical Atlantic a
maximum occurs at about 8°S and a broad maximum
occurs centered on the Equator. In the North Pacific and
North. Atlantic oceans the maximum in dynamic height is
clearly seen to occur during September, whereas in the
southern hemisphere extratropics of these basins the
maximum occurs during April-July.

Contribution of the second Fourier harmonic to the
climatological annual cycle of dynamic height is most
significant in the tropical oceans. Figs. C8-C9 show
amplitude of and percent variance contributed by the
second harmonic. In the equatorial and tropical Indian
Ocean the amplitude of the second harmonic exceeds 7.5
dynamic-cm in some locations and the percent variance
contribution exceeds sixty percent. Figs. C10-C12 show
zonal averages of the amplitude of the second harmonic,
percent variance of the climatological annual cycle
accounted for by this harmonic, and phase of this
harmonic. We have presented these distributions for all
basins because the second harmonic is of importance in
the tropics of all three basins and represents a major



signal in the tropical Indian Ocean. For example in the
8°S-5°N latitude belt of this ocean the amplitude of this
harmonic is approximately 4 dynamic-cm, which
accounts for about 38 percent of the variance of the
annual cycle.

5.3 Comparison of climatological hemispheric
annual cycles with TOPEX altimeter estimates

Fig. D1 shows the seasonal cycle of hemispherically
averaged sea level for forty-one months of TOPEX
altimeter data plotted along with the climatological
seasonal cycle of steric sea level computed from the
fields described in this atlas. On a hemispheric scale, the
seasonal cycle of sea level and steric sea level are clearly
determined by the annual temperature cycle of these
regions. The agreement between the two data sets is better
for the northern hemisphere than the southern
hemisphere. We attribute this to better data coverage of
the northern hemisphere. If we were to compare the
seasonal cycles for smaller regions than we would expect
there to be greater differences between the two data sets
because of the effects of interannual variability.

6. SUMMARY

We have presented climatological monthly mean fields of
dynamic height 0-1000 m along with differences between
monthly mean and annual mean fields.

A Fourier analysis of the climatological annual cycle of
dynamic height 0-1000 m indicates that the first harmonic
is the dominant contributor to the annual cycle for most
of the world ocean. The second harmonic plays an
important role in the tropical Indian Ocean and in some
portions of the tropical Atlantic and Pacific Oceans.
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of the climatological annual cycle of dynamic height 0 - 1000 m
for the global ocean and individual ocean basins
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Fig. C7 Zonally averaged percent variance contributed by the first harmonic
to the climatological annual cycle of dynamic height 0 - 1000 m
for the global ocean and individual ocean basins
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Fig. C10 Zonally averaged amplitude (dynamic cm) of the second harmonic
of the climatological annual cycle of dynamic height 0 - 1000 m

for the global ocean and individual ocean basins
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of the climatological annual cycle of dynamic height 0 - 1000 m
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Fig. C12 Zonally averaged percent variance contributed by the second harmonic
to the climatological annual cycle of dynamic height 0 - 1000 m
for the global ocean and individual ocean basins
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NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of
Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic
impact of natural and technological changes in the environment and to monitor and predict the state of the
solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical informa-

tion in the following kinds of publications:

PROFESSIONAL PAPERS - Important definitive
research results, major techniques, and special
investigations.

CONTRACT AND GRANT REPORTS - Reports
prepared by contractors or grantees under NOAA
sponsorship.

ATLAS - Presentation of analyzed data generally
in the form of maps showing distribution of rain-
fall, chemical and physical conditions of oceans
and atmosphere, distribution of fishes and marine
mammals, ionospheric conditions, etc.
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TECHNICAL SERVICE PUBLICATIONS - Re-
ports containing data, observations, instructions,
etc. A partial listing includes data serials; predic-
tion and outlook periodicals; technical manuals,
training papers, planning reports, and information
serials; and miscellaneous technical publications.

TECHNICAL REPORTS - Journal quality with
extensive details, mathematical developments, or
data listings.

TECHNICAL MEMORANDUMS - Reports of
preliminary, partial, or negative research or tech-
nology results, interim instructions, and the like.
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